1. Find the limit: \(\lim_{h \to 0} (1 + 2h)^{1/h} \).

 a) \(e^{1/2} \)

 b) \(2e \)

 c) \(e^2 \)

 d) \(e \)

 e) None of the above

2. Find the limit : \(\lim_{x \to +\infty} \left[(x + 1)^{\frac{1}{x^2}} - x^{\frac{1}{x+a}} \right] \).

 a) 1

 b) 0

 c) \(a + 1 \)

 d) Does not exist

 e) None of the above

If you need this document in another format, please email minsu.kim@ung.edu or call 678-717-3546.
3. Find the constant c such that the Mean Value Theorem for integrals is satisfied on the interval $\left[0, \frac{\pi}{3}\right]$ for $f(x) = \tan(x)$.

a) $\frac{\pi \ln 2}{3}$

b) $\frac{\pi}{3}$

c) $\frac{\ln 2}{3}$

d) $3\pi \ln 2$

e) None of the above

4. Find the total perimeter of $x^3 + y^3 = b^3$, where b is a fixed, positive number.

a) $2b^2$

b) $\frac{b}{2}$

c) $b^2 + b$

d) $6b$

e) None of the above

5. Find the definite integral: $\int_{2}^{4} \frac{\log_{x}(2)}{x \ln(x)} \, dx$.

a) $\frac{1}{2}$

b) 1

c) $\ln(2)$

d) 8

e) None of the above
6. Let \(f \) be a continuous function such that \(f \) is strictly increasing, \(f(0) = 0 \), and \(f(2) = 4 \). Let \(g \) be the inverse of \(f \). Evaluate \(\int_{0}^{2} f(x) \, dx + \int_{0}^{4} g(y) \, dy \).

 a) 6
 b) 8
 c) 12
 d) 16
 e) None of the above

7. A cable hangs in the form of a catenary between two towers 200 feet apart. The hanging cable is modeled by the equation \(y = 150 \cosh \left(\frac{x}{150} \right) \). One possible integral that represents the arc-length along the cable between the two towers is:

 a) \(\int_{-100}^{100} \sinh \left(\frac{x}{150} \right) \, dx \)
 b) \(\int_{-100}^{100} \cosh^{2} \left(\frac{x}{150} \right) \, dx \)
 c) \(\int_{-100}^{100} \sinh^{2} \left(\frac{x}{150} \right) \, dx \)
 d) \(\int_{-100}^{100} \cosh \left(\frac{x}{150} \right) \, dx \)
 e) None of the above

8. Find \(a \) if \(\lim_{x \to 1} \frac{x + 1}{x^2 + ax + 1} = \frac{1}{9} \).

 a) 2
 b) 4
 c) 8
 d) 16
 e) None of the above
9. Find the integral: \(\int_0^\infty \frac{1}{x^3 + 1} \, dx \).
 a) \(-\frac{\pi \sqrt{3}}{9} \)
 b) \(\frac{2\pi \sqrt{3}}{9} \)
 c) \(\frac{15\pi}{\sqrt{3}} \)
 d) \(\frac{3\pi \sqrt{2}}{2} \)
 e) None of the above

10. Find \((f^{-1})'(1) \), where \(f(x) = x^3 - 3x^2 + 21 \) for \(x < 0 \).
 a) 12
 b) \(\frac{1}{24} \)
 c) \(-\frac{1}{3} \)
 d) Undefined, since \(f^{-1} \) is undefined for \(x < 0 \).
 e) None of the above

11. Evaluate \(\frac{d}{dx} \left[\int_{-\pi}^{x} \sin^2 t \cos^7 t \, dt \right] \) at \(x = \pi \).
 a) \(-1\)
 b) 0
 c) 1
 d) 2
 e) None of the above
12. Find the definite integral: \[
\int_{2}^{4} \frac{x^2 + 1}{(2x - 3)^2} \, dx.
\]

a) \(\frac{9}{4} - \frac{3}{5} \ln 5\)

b) \(\frac{9}{5} - \frac{3}{4} \ln 5\)

c) \(\frac{9}{5} \ln 5 + \frac{3}{4}\)

d) \(\frac{9}{5} + \frac{3}{4} \ln 5\)

e) None of the above

13. Which of the following functions are concave upward on an open interval containing \(x = 0\)?

\(i) \ln x \quad ii) x^2 \quad iii) \cos x \quad iv) \frac{1}{x^2 - 1} \quad v) \tan x\)

a) Only \(i\)

b) Only \(ii\)

c) \(i\) and \(iii\)

d) \(i\) and \(iv\)

e) None of the above

14. Find the limit: \[
\lim_{h \to 0} \frac{1}{h} \int_{1}^{1+h} \sqrt{x^5 + 8} \, dx.
\]

a) 3

b) \(2\sqrt{2}\)

c) 1

d) 0

e) None of the above
15. Four feet of wire is available to form a square or a circle or both. How much of the wire should be used for the square and how much should be used for the circle to ensure the maximum total area?

a) 3 feet should be used for the circle and 1 foot for the square.

b) All 4 feet should be used for the circle and nothing for the square.

c) 2.5 feet should be used for the square and 1.5 feet for the circle.

d) All 4 feet should be used for the square and nothing for the circle.

e) None of the above

16. In a movie theater with level floor, the bottom of the screen is 8 feet above your eye level, and the top of the screen is 8 feet above that. How far back from the screen you should sit in order to maximize your viewing angle α?

a) 32 feet

b) 16 feet

c) $4\sqrt{2}$ feet

d) $8\sqrt{2}$ feet

e) None of the above

17. Let $f(x) = \int_1^x \frac{\ln(t)}{1+t} \, dt$ for $x > 0$. Find $f(x) + f\left(\frac{1}{x}\right)$.

a) $\frac{(\ln x)^2}{2} + \frac{\ln x}{2}$

b) $\frac{[\ln(1+x)]^2}{2}$

c) $\frac{(\ln x)^2}{2}$

d) $\frac{2(\ln x)^2}{2}$

e) None of the above
18. Determine a and b in the formula $\sin x + \cos x = a \sin(x + b)$ and evaluate the integral $\int \frac{1}{\sin x + \cos x} \, dx$.

\[
\int \frac{1}{\sin x + \cos x} \, dx = \frac{-1}{\sqrt{2}} \ln \left| \csc \left(x + \frac{\pi}{4} \right) + \cot \left(x + \frac{\pi}{4} \right) \right| + C
\]

a) $-\frac{1}{\sqrt{2}} \ln \left| \csc \left(x + \frac{\pi}{4} \right) + \cot \left(x + \frac{\pi}{4} \right) \right| + C$

b) $\frac{\sqrt{3}}{2} \ln \left| \sec \left(x + \frac{\pi}{3} \right) + \tan \left(x + \frac{\pi}{3} \right) \right| + C$

c) $-\frac{\sqrt{3}}{2} \ln \left| \csc \left(x + \frac{\pi}{3} \right) + \cot \left(x + \frac{\pi}{3} \right) \right| + C$

d) $\frac{1}{\sqrt{2}} \ln \left| \sec \left(x + \frac{\pi}{4} \right) + \tan \left(x + \frac{\pi}{4} \right) \right| + C$

e) None of the above

19. Find the definite integral: $\int_{0}^{\pi} \frac{x \sin x}{1 + \cos^2 x} \, dx$.

\[
a) \frac{\pi^2}{4}
\]

\[
b) \left(\frac{\pi}{4} \right)^2
\]

\[
c) 4\pi^2
\]

\[
d) \frac{\pi^2}{2}
\]

e) None of the above

20. Find the limit: $\lim_{x \to 0} \frac{\left(e^{4x} - 4x \right)}{e^{2x} - 2x} \frac{1}{x^2}$.

\[
a) e^6
\]

\[
b) e^{-2}
\]

\[
c) e^{6g}
\]

d) Does not exist

e) None of the above
21. Find the equation of the tangent line to the graph of \(f(x) = \frac{3 - \left(\frac{1}{x} \right)}{x + 5} \) at \((-1, 1)\).

a) \(y = 1 \)
b) \(y = x - 1 \)
c) \(x + y = 1 \)
d) \(y = \frac{3}{5}x + 1 \)
e) None of the above

22. Find \(\frac{f''(1)}{f(1)} \) if \(\lim_{{x \to 1}} \frac{f(x) - 2}{x^2 - 1} = 3 \), where \(f(x) \) is a polynomial.

a) \(3 \)
b) \(\frac{7}{2} \)
c) \(4 \)
d) \(\frac{9}{2} \)
e) None of the above

23. If a tangent line to the graph of \(y = x^3 - x^2 + a \) at \((1, a)\) passes through \((0,12)\), then the value of \(a \) must be:

a) \(7 \)
b) \(10 \)
c) \(13 \)
d) \(16 \)
e) None of the above
24. Given that two non-negative numbers have a sum of 9 and the product of one number and the square of the other number is a maximum, find this maximum.

a) 108
b) 110
c) 106
d) 100
e) None of the above

25. Given $f(x) = x^2 - x + a$ and $g(x) = \begin{cases} f(x+1) & \text{if } x \leq 0 \\ f(x-1) & \text{if } x > 0 \end{cases}$.

If a function $y = [g(x)]^2$ is continuous at $x = 0$, find the value of a.

a) -2
b) -1
c) 0
d) 1
e) None of the above

26. 500 feet of fencing is used to build a rectangular pen that has three parallel partitions. What dimensions will maximize the total area of the pen?

a) 50 feet by 125 feet
b) 75 feet by 150 feet
c) 25 feet by 50 feet
d) 50 feet by 150 feet
e) None of the above

27. Let f be a one-to-one function, such that $f(1) = 11$ and $f(5) = 4$. Assume $\int_{1}^{5} f(x) \, dx = 23$.

Calculate $\int_{4}^{11} f^{-1}(x) \, dx$.

a) 11
b) 12
c) 13
d) 14
e) None of the above
28. Find the dimensions of the rectangle of largest area which can be inscribed in the closed region bounded by the x-axis, y-axis and the graph of \(y = 8 - x^3 \).

a) \(2^{1/3} \) by 6
b) \(3^{1/2} \) by 6
c) \(6^{1/2} \) by 3
d) \(2^{1/3} \) by 3
e) None of the above

29. Find the integral: \(\int \frac{x^2 \, dx}{(1 + x)^{1/3}} \).

a) \(\frac{3}{20} (x+1)^{1/3} (10 - 5x + 3x^2) + C \)
b) \(\frac{1}{3} (x+1)^{1/3} (9x - 5x^2 + 8x^3) + C \)
c) \(\frac{3}{40} (x+1)^{2/3} (9 - 6x + 5x^2) + C \)
d) \(\frac{1}{3} (x+1)^{2/3} (10x - 6x^2 + 3x^3) + C \)
e) None of the above

Reminder

Question 30 will be used as a tie-breaker, if necessary.

30. Find the definite integral: \(\int_{0}^{1} e^{\sin^2 x} e^{\cos^2 x} \, dx \).

a) 0
b) \(e \)
c) \(\pi \)
d) 1
e) None of the above
31. Find the volume of the solid obtained by revolving the region in the first quadrant bounded by
\[y = \frac{1}{x}, \quad y = x, \text{ and } x = 2 \] about the x-axis.

\[a) \frac{5\pi}{6} \]
\[b) \frac{11\pi}{3} \]
\[c) \frac{11\pi}{5} \]
\[d) \frac{11\pi}{6} \]
\[e) \text{ None of the above} \]

32. If \(y = x^{\tan(3x)} \), find \(y' \).

\[a) \quad y' = x^{\tan(3x)} \left(\frac{\tan(3x)}{x} + 3 \sec^2(3x) \ln x \right) \]
\[b) \quad y' = x^{\tan(3x)} \left(\frac{\tan(3x)}{x} - 3 \sec^2(3x) \ln x \right) \]
\[c) \quad y' = x^{\tan(3x)} \left(x \tan(3x) + 3 \sec^2(3x) \ln x \right) \]
\[d) \quad y' = x^{\tan(3x)} \left(\frac{\tan(3x) + 3 \sec^2(3x) \ln x}{x} \right) \]
\[e) \text{ None of the above} \]

33. Find the limit: \(\lim_{x \to \infty} \left(\sqrt{x^2 + x} - x \right) \).

\[a) \quad 0 \]
\[b) \text{ Does not exist} \]
\[c) \quad \frac{1}{2} \]
\[d) \quad 1 \]
\[e) \text{ None of the above} \]
34. Find the definite integral: \(\int_{1}^{e} (\ln x)^2 \, dx \).

a) \(e - 2 \)
b) \(e \)
c) 1
d) \(\frac{e}{4} \)
e) None of the above

35. How many functions \(h \) are there such that \(h'(x) = h(x) \)?

a) 2
b) 3
c) 4
d) Infinitely many
e) None of the above

36. If \(\cos y = x \), find \(\frac{dy}{dx} \).

a) \(\sqrt{1 - x^2} \)
b) \(\sec^2 y \)
c) \(-\csc y \)
d) \(\frac{1}{1 + x^2} \)
e) None of the above

37. If \(y = \log_2 \left(x^3 \right) \), find \(\frac{dy}{dx} \).

a) \(3 \log_2 (x^2) \)
b) \(\frac{3}{x \ln 2} \)
c) \(\frac{x \ln 3}{2} \)
d) \(\frac{6}{\ln x} \)
e) None of the above
38. Differentiate \(y = \sec^2(x^4)\tan^3(x^4) \).

a) \(4x^3 \sec^2(x^4)\tan^2(x^4)\left[3\sec^2(x^4) + 2\tan^2(x^4)\right] \)
b) \(4x^4 \sec^2(x^4)\tan^2(x^4)\left[3\sec^2(x^4) + 2\tan^2(x^4)\right] \)
c) \(4x^3 \sec^2(x^3)\tan^2(x^4)\left[3\sec^2(x^4) + 2\tan^2(x^4)\right] \)
d) \(4x^3 \sec^2(x^3)\tan^2(x^3)\left[3\sec^2(x^4) + 2\tan^2(x^4)\right] \)
e) None of the above

39. Find the volume of the solid obtained by revolving the region in the first quadrant bounded by the \(x \)-axis, the \(y \)-axis, and the line \(4x + 2y = 8 \) about the \(x \)-axis.

a) \(16\pi \)
b) \(\frac{32\pi}{3} \)
c) \(\frac{817}{10} \)
d) \(3\sqrt{2} \)
e) None of the above

40. An article in the Wall Street Journal’s “Heard on the Street” column (Money and Investment, August 1, 2001) reported that investors often look at the “change in the rate of change” to help them “get into the market before any big rallies.” Your stock broker alerts you that the rate of change in a stock’s price is increasing. As a result you

a) Can conclude the stock’s price is decreasing
b) Can conclude the stock’s price is increasing
c) Cannot determine whether the stock’s price is increasing or decreasing
d) Can conclude the stock’s price is neither increasing or decreasing
e) None of the above