UNG $\begin{aligned} & \text { UNIVERSITY of } \\ & \text { NORTH GEORGIA }\end{aligned}$

Twenty-Sixth Annual Mathematics Tournament April 15, 2023
 Solutions

Round 1: Total number of tulip bulbs: 30, number of yellow tulip bulbs: 10, number of red tulip bulbs: 10. Let R : a randomly selected tulip bulb is red, Y : a randomly selected tulip bulb is yellow. So, we want to know $P\left(R_{1} \cap Y_{2}\right)+P\left(Y_{1} \cap R_{2}\right)$, where R_{i}, Y_{i} stands for red tulip bulb or yellow tulip bulb in the $i^{\text {th }}$ draw, $i=1,2$.

$$
\begin{aligned}
& P\left(R_{1} \cap Y_{2}\right)+P\left(Y_{1} \cap R_{2}\right)=P\left(Y_{2} \mid R_{1}\right) \cdot P\left(R_{1}\right)+P\left(R_{2} \mid Y_{1}\right) \cdot P\left(Y_{1}\right) \\
& =\frac{10}{29} \cdot \frac{10}{30}+\frac{10}{29} \cdot \frac{10}{30}=\frac{10}{87}+\frac{10}{87}=\frac{20}{87}
\end{aligned}
$$

Round 2: Let $n(x)$ represent the number of elements in the set represented by x. Let U be the universal set.

$$
\begin{aligned}
& n(B 12)=150, n(C)=200, n(E)=165 \\
& n(B 12 \cap C)=57, n(B 12 \cap E)=57, n(C \cap E)=82 \\
& n(B 12 \cap C \cap E)=52 \\
& n(U)=500 \\
& n(U)=n(B 12)+n(C)+n(E)-n(B 12 \cap C)-n(B 12 \cap E)-n(C \cap E) \\
& +n(B 12 \cap C \cap E)+n\left([B 12 \cup C \cup E]^{c}\right)
\end{aligned}
$$

So, $500=150+200+165-57-57-82+52+n\left([B 12 \cup C \cup E]^{c}\right) \Rightarrow n\left([B 12 \cup C \cup E]^{c}\right)=$ $500-371=129$.

Round 3: F : original amount of grass grass in the field, G : amount of grass growing daily, C : amount of grass a cow eats daily

$$
\begin{aligned}
& F+14 G=14(60 \mathrm{C}) \Rightarrow F+14 G=840 \mathrm{C} \\
& F+28 G=28(50 \mathrm{C}) \Rightarrow F+28 G=1400 C \\
& 14 G=560 C \Rightarrow G=\frac{560}{14} C \\
& \Rightarrow G=40 C
\end{aligned}
$$

Hence, the maximum number of cows would be 40 .

Round 4: Extend the sequence a little bit more and see the pattern.

$$
3,3,2,1,3,0,3,3,2,1,3,0 \ldots
$$

So, we find a cycle of length 6 . Dividing 1209 by 6 , we will obtain the quotient of 201 with a remainder of 3 . This represents 201 complete cycles of length 6 and 3 digits into the next cycle, which would give the digit 2 as the $1209^{\text {th }}$ term. Hence the $1209^{\text {th }}$ term is 2.

Round 5:

$$
\begin{aligned}
& \text { Let } \log _{9}(p)=\log _{12}(q)=\log _{16}(p+q)=k \\
& \Rightarrow \log (p)=k \log 9=2 k \log 3 \\
& \log (q)=k \log 12=2 k \log 2+k \log 3 \\
& \log (p+q)=k \log 16=4 k \log 2 \\
& \text { Hence, } \log (q)=\frac{1}{2} \log (p+q)+\frac{1}{2} \log p \\
& \Rightarrow 2 \log (q)=\log \left(p^{2}+p q\right) \\
& \Rightarrow q^{2}=p^{2}+p q \Rightarrow\left(\frac{q}{p}\right)^{2}-\left(\frac{q}{p}\right)-1=0 \\
& \Rightarrow \frac{q}{p}=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(1)(-1)}}{2(1)}=\frac{1 \pm \sqrt{5}}{2} \\
& \text { So, } \frac{q}{p}=\frac{1+\sqrt{5}}{2} \text { as } \frac{q}{p}>0 .
\end{aligned}
$$

Round 6: For $n^{2}-2 n-8$ to be equal to a prime number, one of its factors must be equal to 1 . Factoring gives $(n-4)(n+2)$, so either $n-4=1$ or $n+2=1$. Solving the first equation gives $n=5$, and solving the second equation gives $n=-1 . \quad n=-1$ is not a natural number, thus not an answer. $n=5$ is a natural number and makes $(n-4)(n+2)=$ $(5-4)(5+2)=(1)(7)=7$, which is a prime number. $n=5$ is the only natural number.

Round 7: Let m, n be the numbers of digits in 2^{2005} and 5^{2005}. Then observe that

$$
10^{m-1}<2^{2005}<10^{m} \quad, \quad 10^{n-1}<5^{2005}<10^{n}
$$

implying that

$$
10^{m+n-2}<2^{2005} \cdot 5^{2005}=10^{2005}<10^{m+n}
$$

Hence $m+n-2<2005<m+n$, so $m+n=2006$, which is the answer.

Round 8: We wish to seat 5 people, 3 of whom must sit consecutively, in 12 seats. Since the block takes up 3 of the 12 places, it must begin in one of the first $12-(3-1)=12-3+1=10$ positions. Once the block has been placed, there are $12-3=9$ seats left for the remaining $5-3=2$ people. They can be arranged in those seats in $P(9,2)$ ways. The people within the block can be arranged in 3! ways, which gives us the formula $10 \cdot P(9,2) \cdot 3!=10 \cdot 72 \cdot 6=4320$ ways.

Note here $P(n, r)$ stands for the number of permutations of r items out of a pack of n items and is defined via $P(n, r)=\frac{n!}{(n-r)!}$, where $0!=1,1!=1,2!=2 \cdot 1=2$, $3!=3 \cdot 2 \cdot 1=6,4!=4 \cdot 3 \cdot 2 \cdot 1=24$, and in general $n!=n \cdot(n-1) \cdot 3 \cdot 2 \cdot 1, n$ is a non negative integer.

Round 9: $\log _{2}\left(\log _{4}\left(\log _{\frac{1}{2}}\left(\log _{9}(2 k)\right)\right)\right)=-1$

$$
\begin{aligned}
& \Rightarrow \quad \log _{4}\left(\log _{\frac{1}{2}}\left(\log _{9}(2 k)\right)\right)=\frac{1}{2} \\
& \Rightarrow \quad \log _{\frac{1}{2}}\left(\log _{9}(2 k)\right)=2 \\
& \Rightarrow \quad \log _{9}(2 k)=\frac{1}{4} \\
& \Rightarrow \quad 2 k=9^{\frac{1}{4}}=\sqrt{3} \\
& \Rightarrow \quad k=\frac{\sqrt{3}}{2}
\end{aligned}
$$

Thus $\arccos (k)=\arccos \left(\frac{\sqrt{3}}{2}\right)=\frac{\pi}{6}$.

Round 10: The diameter of the outside most circle is 6 units. So, radius is 3 units. Hence, the area of the outside most circle is 9π squared units. Each of the smaller inner circles has radius of 1 unit. So, the area of each inner circle is π square units. Thus we have $9 \pi-7 \pi=2 \pi$. Hence, area of the shaded region is 2π square units.

