ROUND \#1

Gainesville State College
Mathematics Tournament
April 8, 2006

The sum of the first 90 positive even integers minus the sum of the first 90 positive odd integers is equal to ?

ROUND \#2

Gainesville State College Mathematics Tournament April 8, 2006

Find x, if $\frac{25}{1+\frac{3}{3+\frac{x}{4}}}=13$.

ROUND \#3

Gainesville State College
Mathematics Tournament
April 8, 2006

Two circles of radius 1 are tangent to each other and to a line as shown.
What is the radius of the largest circle that will fit in the shaded area?

ROUND \#4

Gainesville State College
Mathematics Tournament
April 8, 2006

The manager of an 80-unit apartment complex knows from experience that at a rate of $\$ 300$ all the units will be full. On average, one additional unit will remain vacant for each $\$ 20$ increase in rent over $\$ 300$. Furthermore, the manager must keep at least 30 units rented due to other financial considerations. Currently, the revenue from the complex is $\$ 35,000$. How many apartments are rented?

ROUND \#5

Gainesville State College
Mathematics Tournament
April 8, 2006

If all possible permutations of the letters in the word MATH are listed in alphabetical order, where does the word MATH appear on the list?

ROUND \#6

Gainesville State College
Mathematics Tournament
April 8, 2006

A non-square rectangle is inscribed in a 3 inch by 3 inch square so that each vertex of the rectangle is at a one-third point on a different side of the square. Find the area of the rectangle.

ROUND \#7

Gainesville State College
Mathematics Tournament
April 8, 2006

Let C be the portion of the graph of $y=1-x^{2}$ with $0 \leq x \leq 1$, and let C^{\prime} be the reflection of C around the line $y=x$. How many points are there in the intersection of C and C^{\prime} ?

ROUND \#8

Gainesville State College
Mathematics Tournament
April 8, 2006

Solve the equation (give all answers): $\quad \log _{64} x-\log _{x} 64=\frac{5}{6}$

ROUND \#9

Gainesville State College
Mathematics Tournament
April 8, 2006

Find the area of the shaded region in the parallelogram ABCD . Assume that $\mathrm{BE}=\mathrm{EF}=\mathrm{FC}, \mathrm{DG}=\mathrm{CG}, \mathrm{AB}=12$, and $\mathrm{CH}=6$.

ROUND \#10

Gainesville State College
Mathematics Tournament
April 8, 2006

Find one set of distinct values of the integers a, b, c, and d where $a>b>c>d>0$ such that $a^{3}+d^{3}=b^{3}+c^{3}=1729$.

